Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2295703

ABSTRACT

Continuous evaluation of the coronavirus disease 2019 (COVID-19) vaccine effectiveness in hemodialysis (HD) patients is critical in this immunocompromised patient group with higher mortality rates due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The response towards vaccination in HD patients has been studied weeks after their first and second SARS-CoV-2 vaccination dose administration, but no further studies have been developed in a long-term manner, especially including both the humoral and cellular immune response. Longitudinal studies that monitor the immune response to COVID-19 vaccination in individuals undergoing HD are therefore necessary to prioritize vaccination strategies and minimize the pathogenic effects of SARS-CoV-2 in this high-risk group of patients. We followed up HD patients and healthy volunteers (HV) and monitored their humoral and cellular immune response three months after the second (V2+3M) and after the third vaccination dose (V3+3M), taking into consideration previous COVID-19 infections. Our cellular immunity results show that, while HD patients and HV individuals secrete comparable levels of IFN-γ and IL-2 in ex vivo stimulated whole blood at V2+3M in both naïve and COVID-19-recovered individuals, HD patients secrete higher levels of IFN-γ and IL-2 than HV at V3+3M. This is mainly due to a decay in the cellular immune response in HV individuals after the third dose. In contrast, our humoral immunity results show similar IgG binding antibody units (BAU) between HD patients and HV individuals at V3+3M, independently of their previous infection status. Overall, our results indicate that HD patients maintain strong cellular and humoral immune responses after repeated 1273-mRNA SARS-CoV-2 vaccinations over time. The data also highlights significant differences between cellular and humoral immunity after SARS-CoV-2 vaccination, which emphasizes the importance of monitoring both arms of the immune response in the immunocompromised population.

2.
Front Med (Lausanne) ; 9: 910987, 2022.
Article in English | MEDLINE | ID: covidwho-2142048

ABSTRACT

Background: While anti-SARS-CoV-2 vaccination success in kidney transplant recipients (KTR) after two doses and 1273-mRNA was associated with higher seroconversion rates compared to BNT162b2-mRNA in our "DIA-Vacc Study" (NCT04799808), it remains unclear whether this may also be the case in non-responding KTR after a third vaccination dose. Materials and Methods: Non-responding KTR (after two mRNA vaccinations) were investigated 4.5-6 months after study enrollment at first vaccination. One hundred sixty-six of 193 received a third vaccination between 3.5 and 5 months after the initial study enrollment and were always investigated 4 weeks later, exploring humoral immune response (ELISA) and specific cellular responses (interferon-γ release assay). Sixty-seven of 193 measurements in KTR were done immediately before the third vaccination or in KTR without further vaccination at 4.5-6 months. Results: Of 193 KTR with no initial immune response 4 weeks after the second vaccination, 106/87 were immunized twice with 1273-mRNA/BNT162b2-mRNA, respectively. Additional mRNA booster vaccination led to positive seroconversion rates of 30-50%, while 16% of the initial non-responders demonstrated a delayed seroconversion without any booster vaccination. Using logistic regression analysis, a positive IgG response after the third vaccination was 23% more likely if the primary vaccine type was 1273-mRNA compared to BNT162b2-mRNA (OR = 4.420, 95% CI [1.208-16.173], p = 0.025). Primary vaccine type, a weak anti-SpikeS1 IgG response 4 weeks after second vaccination (3.2-35.2 BAU/ml, p < 0.001) and a lack of MMF/MPA as part of the immunosuppressive treatment (trend, p = 0.06) but no other variables studied correlated with seroconversion success. Conclusion: This observational study adds important evidence toward using 1273-mRNA as the primary mRNA vaccine type for immunosuppressed KTR.

SELECTION OF CITATIONS
SEARCH DETAIL